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INTRODUCTION page 1 

(a)    SUMMARY 

I.    INTRODUCTION 

The overall objective of our research is to gain more insißW into the 

programming process as a necessary step toward building program-uiulnstatnling systems. 

Our approach has been to examine the process of synthesizing very simple procrnms in 

the domain of sorting. We hope that by beginning with this simple domain and 

developing and implementing a reasonably comprehensive theory, we can then gauge 

what is required to create more powerful and general program-understanding systems. 

Toward this end, we are working on first isolating and codifying the knowledge 

appropriate for the synthesis and understanding of programs in this class and then 

embedding this knowledge as a set of rules in a computer program. Along the way, we 

have developed some preliminary views about what a program-understanding system 

should know. 

Our goal in this particular paper is to present a dialogue with a hpothdiail 

program-understanding system. A dialogue was chosen as a method of presentation 

that would exemplify, in an easily understood fashion, what such a system should know. 

The subject of the dialogue is the synthesis of a simple insertion sort program. Each 

step in the dialogue corresponds to the utilization of one or more pieces of suggested 

programming knowledge. Most of this knowledge is slated explicitly in each step. The 

dialogue presented here is a highly fictional one, although some portions of ihe 

reasoning shown in the dialogue have been tested in an experimental system. 

mm** 
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We are now in the process of formulating the necessary programming knowledge 

as a set of synthesis rules. However, the scope of this paper does not include the 

presentation of the current state of our rules. So far some 110 rules have been 

developed and are being refined in a rule-lesling system. The synthes.s tasks on which 

these rules are being debugged include two insertion sorts, one selection sort, and a 

list reversal.   Wc hope to present in a later paper a description of the set of rules. 

As will become apparent in the dialogue, one of our conjectures is that a 

program-understanding system will need very large amounts of many different kinds of 

knowledge. This seems to be the key to the flexibility necessary to synthesize, 

analyze, modify, and debug a large class of programs. In addition to the usual types of 

programming knowledge, such as the semantics of programming languages or techniques 

of local optimization, many other types are needed. These include, at least, high-level 

programming constructs, strategy or planning information, domain-specific and general 

programming knowledge, and global optimization techniques. In Section 111 we discuss 

this further and show where these kinds of knowledge occur in the dialogue. 

(b)    DOMAIN OF DISCOURSE 

Topics mentioned in the dialogue include data structures, low-level operations, 

and high-level programming constructs. The main data structures mentioned in our 

dialogue are ordered sets represented by lists. The-low level operations mentioned 

include assignment, pointer manipulation, list insertion, etc. Some of the higher-level (in 

some sense) notions or constructs we consider are permutation, ordering (by various 

rn^rnm lunmmiti ^^■v-■<.,*■■-... 
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INTRODUCTION paße 3 

criteria), set enumeration, generate and test, generate and process, proof by induction, 

conservation of elements durinß a transfer, and methods of temporary marking (or 

place-saving) of positions and elements. Time and space requirements for various 

methods are not discussed. 

The target language is LISP, in particular the INTERLiSP language [10].   However, 

in the dialogue we represent the programs in a fictitious meta-USP, 

II.    A DIALOGUE 

(a)    INTRODUCTION 

In this section we wish to exhibit what we consider to be a reasonable level of 

understanding on the part of a progran-understanding system. It is not obviou-: how 

best to present this in a way that is easy for the reader to follow, since the synthesis 

process is rather complex. Wo hope that an English language dialogue is adequate. We 

have added to the English several "snapshots" of the developing program that help to 

indicate where the system is in the programming process. These diagrams are similar 

to the stepwise refinements used in structured programming [1], Our dialogue may be 

considered as a continuation of the technique of presentation used by Floyd for a 

program verifier-synthesizer [2], although our more hypothetical system has been 

allowed to know more about program synthesis for its domain of discourse. 

In certain ways we feel that the dialogue is not representative of how a 

program-understanding system would appear to the user during the synthesis process 

--  I äjMiiftifct^i^Mjairtohk^.'fi .._ .__ „i j^iM 
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(although such a low-level dialocue would at times have its place). For expository 

purposes the dialogue has certain choices and inferences made by the machine and 

others made by the user. Depending upon the application, these decisions and 

Inferences could reasonably be re-distributed between user and machine, with some 

made by other automated "experts", such as an efficiency expert, and other decisions 

forced by the context in which the program is written. For example, the data 

structures for this insertion sort might be determined in advance if the sort routine 

were part of a larger system, and all choices made by the user could be made instead 

by rules calculating the efficiency of each branch. A more typical user-machine dialogue 

would usually be conducted at a much higher level and in the words used to talk about 

the application area for the program. But to present a hypothetical dialogue in which 

the program merely said, "OK, I'm all finished," or, "I wrote a sort program as part of 

your operating system," wouldn't explicate very much programming knowledge. 

The style of the dialogue is not intended to be a strong suggestion about what 

the process of sfwifying a program should be. In fact, we feel that program 

specificaticn is a difficult problem in automatic programming research [4 j, and we touch 

on only a few aspects of it here. However, some of the techniques used in the 

dialogue will probably find some, as yet undetermined, place in program-understanding 

systems. The obvious techniques include interactive specification, natural language 

communication, and the periodic presentation of suimnaries of the structure and content 

of the evolving program. 

We note that we have endowed our hypothetical system with various abilities. 

^aMB||raiMMi^rt^  ■MMMiMIUMIMilim mi 
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A DIALOGUE page 5 

including an inference capability, a program simplification capability, and the ability to 

illustrate and summarize where it is in the programming process. Further, the dialogue 

sometimes takes on the character of a decision-tree, sometimes of goal-orientsd 

problem-solving, and sometimes of step-wise refinement. These all seem appropriate 

to the task. 

Various decisions, such as how large to make a step, when to suppress or 

explicate an inference, and when to present a diagram, are somewhat arbitrary, but 

were made primarily on the basis of what seemed to be the clearest exposition. 

Before the start of the dialogue, we wish to remind the user that the focus is 

not on the particular mechanisms which might be employed to produce the hypothesized 

behavior, but rather on the reasoning itself. 

(b)     PART 1: Setting Up tho Main Tasks 

1. User:   Please write me a sort program.   Use linked lists to represent the input and 

output, which arc ordered sots. The output set should be ordered so that each 

element is numerically greater than the preceding element. The input set will be 

called INPUT and the output set will be called OUTPUT. 

2. Machine:   As I understand it, a sort program produces as output a permutation 

(of the input) that satisfies a test. In this case, the test is that the elements be 

ordered on the basis of the above-mentioned ordering relation, "numerically 

greater  than".    Please choose  one  of the two known methodsi   for  finding  a 

T The limitation to only two "known" choices is arbitrary, but it is reasonable to expect 
a system to have a limited number of choices. 

rat**   MMWMMMMMMMKttMMliM liMlf1imrii[^-tii'li['iir'J-''r ■ -    '-'tir 



^wywi^wsrarrwiR^ 

PART 1: Setting Up the Main Tasks page 6 

permutation that satisfies a test: 

(a) Generate and test permutations until the desired one is found, 

'b) Carefully construct the desired permutation. 

3. User:   Carefully construct the desired permutation. 

4. Machine:   Should the output set be constructed in the same list colls as the 

input set, or should a new list be created? 

5. User:   A new list should be created.! 

6. Machine:   Do you want an iterative or recursive program? 

7. User:   Iterative.   [We wish to remind the reader that the distinctions between 

"user" and "machine" arc somewhat arbitrary. Yet a decision must be made, so 

we have chosen to let our hypothetical "user" make it. Furthermore there is no 

reason to expect the user to have a preference for an iterative or recursive 

program. We have our user choose an iterative structure over what might be a 

more natural recursive structure, because there are fundamental aspects of the 

algorithm which are more explicit in its iterative form.] 

8. Machine:   Then the program will be in the form of a transfer progmm which must 

be (otali The program will transfer all elements from the input to positions in 

the output, such that the final output is a permutation (of the input) which 

satisfies the above ordering relation, namely increasing by numerical value. 

r This does not preclude overwriting the input set during the sort. Overwriting might be 
done in order to indicate which elements have been selected from the input. 

? By "total", we mean that the transfer loop must be repeated until all elements have 
been transferred. 
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The transfer poradigmü 

transfer program; 
LOOP UNTIL nil   elements of   input  have been processed; 

selector; 
select   the next  element   from   input; 

constructor; 
add  this element   to output; 

REPEAT. 

9. Machine!   In order to write such a transfer program, I must achieve several 

goals: 

(1) Write a selector. On each call, the selector will find that element of 

the input which comes next in the chosen transfer order. The selector 

consists of two parts: 

(a) selector initializer 

(b) selector body 

(2) Write a constructor. On each call, the constructor will produce a new 

output (or modify the old output), so that the new element is in the 

appropriate position but that otherwise the order of elements in the 

output is unchanged.  The constructor consists of two parts: 

(a) constructor initializer 

t As illustrated, the transfer program has a "selector" part and a "constructor" part. 
The selector produces the element'-, one at a lime, and the constructor builds the new 
set.   Either the selector or the constructor may re-order the set, i.e., the selector can 
produce the elements in an order different from the stored order, or the constructor 
can build a set with an ordering different from the order of receipt of the elements. 

? We will generally present in our diasrams only those parts which seem relevar'. to 
the curren* conl    t. 

■•—'-'—' HililiiHi Milinr"" - .^..-^ u..  JiiliMMmillMMlirT ii 
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(b) conolrudor body 

Before I can write these parts, I must: 

(3) Select a transfft OK/O—the order in which the variables will be 

transferred from the input to the output. 

(4) Select a transfer termination mctliod—a test that all elements have 

been transfered, and a position in the program appropriate to the type of 

test selected. 

(5) Select a name for the transfer variable—a variable which holds as its 

value the element being transferred. 

After writing the parts, I must: 

(6) Combine the selector, constructor and transfer termination test into 

a generate and process loop.  This completes the f;nal program, 

'ma'^^'*''-,'i;ia"''ttMB'aaMj'Ma^^ i  . rfiwiaaÄiÄto^iaj.. 
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(b) conclructor body 

Before I can write these parts, 1 must: 

(3) Select a transfer (Wo—the order in which the variables will be 

transferred from the input to the output. 

(4) Select a transfer termination method—a test that all elements have 

been transfered, and a position in the program appropriate to the type of 

test selected. 

(5) Select a name for the transfer vnriable—a variable which holds as its 

value the element being transferred. 

After writing the parts, I must: 

(6) Combine the selector, constructor and transfer termination test into 

a generate and process loop.  This completes the final program. 

-mm*m - ■ -   - ■ 
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PART 1: Settinc Up the Main Tackr. page 9 

The basic otruclurc of tho proßrom (including test position)! 

i 

L 

transfer   i ni t i nIi rnr: 
seIoctor    initia Ii zer: 
construe tor   i nit ial i'er: 

transfer   body: 
LOOP UNTIL DONE; 

transfer   termination  tost: 
IF  all   olements  havo  been   transferred 

THEN DONE: 

selector  body: 
seifet   the  next   element   from   input; 

constructor body: 
add   Ihn element   to nut put; 

REPMT; 
DONE:    HALT 

(1)(a) 

(2)(a) 

(A) 

(1)(b) 

(2) (b) 

10. Machine:   Should the tranofer order be linear with respect to the initial order 

or the final order'.'! 

11. User:   Linear with respect to the initial order. 

12. Machine:    Should the transfer order be identical to the initial  order or the 

converse of tho initial order? 

13. User:   Identical. 

t Our syntax for iterative statements and exits is that proposed by Zahn [11] and 
supported by Knulh [Gj. Loops ore exited upon encountering an event, such as DONE in 
the above example. The program exits to the occurrence of the ev?nt label after the 
body of the loop. Events are declnrod after Lnni1 UNTIL. REPEAT denotes the end of the 
loop. 

? We define the "initial" and "final" orders to be the conventional list-representation 
ordering of the input set and of the desired output set, respectively. By "linear with 
respect to an order" we mean either identical to that order or the converge of that 
order. The user's choice of "linear with respect to the initial order" amounts to 
choosing an insertion sort algorithm, rather than a selection sort algorithm. The full 
effect of this choice will be seen when jhoosing the "construction re-ordering" during 
the synthesis of the constructor. 

     .-/,.,tj-^--i--....i.^J',..-.-*-iiW>ii^;. 
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PART 1: Setting Up the Main Tacks page 10 

14. Machine:   Now let's select a transfer termination method.   This will consist of a 

test and a position for the test. Since the transfer will be total, the transfer 

termination test must test whether all elements have been transferred. This is 

equ'valent to testing whether no elements remain to be selected. This is the 

same test which is used by the selector to slop its generation of elements. I will 

use this test as the transfer termination test. While writing the selector I will 

thus have to write a third part: the selector termination test. Since this test 

must precede a call to the selector body, I will put the test at the beginning of 

the loop.t 

15. Machine:   I will use ELEMENT as the transfer variable.? 

t For ease in presentation the preceding diacram showed the result of this choice (i.e., 
the test appeared in the proper location), although the choice had not yet been made. 
Considering all of the tests which might have been used and all of the places where 
such a test might have been put, one could imagine a great deal of planning going into 
making this rather difficult decision. 

? To choose meaningful variable names requires knowledge about communication with 
the user and is a difficult problem. 

mmmm ■ — ""j-:—   ■   i 
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(o)    PART 2: Synthesizing the Selector 

We are about to work on the indicatedl parts of the selector 

transfer   Ini t i nli zen 
selector initializer: -n 
constructor   initializer; 

transfer  body: 
LOOP UNTIL DONE; 

tran?ff?r   termination  tost; 
IF all   elements have been  tran?fpri-ed* 

n/l elements haiv been selected ^i 
jmi DONE; 

selector body! 
select the next element fiom input; n 

constructor  body: 
add   the  element   to output; 

REPFAT; 
DONE:    HALT. 

16. Machine: I will now choose a selection re-ordering. I will use the term "selection 

re-ordering" to refer to the relation between (a) the order of the elements in 

the input (positional order) and (b) the order in which the elements are selected 

by the selector (temporal order).   Since the transfer order is linear and forward 

t Throughout this dialogue, we will use speciol characters and type fonts to indicate 
different sections of those diagrams.  We present the meaning of the fonts here in case 
confusion arises, but the meaning should be clear from the context, 

areas not under consideration 
(uith  •   •   •   indicating  areas omitted] 

areas currently under consideration 
PROGRAM PARTS JUST COMPLETED 
RESRRvr.n wnnns 
BA5IC LISP rUNCTIONS 

USER- OR MACHINE-DEFINED LABELS 
=> the right  arrow   indicate?;  a  stop   in  the refinement  process 

mtmmmmmm Mi-mmiii   i i -  11- i  111 ii ••iiiiii 
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(that is, identical to the input order), the selection re-ordcring must also be 

linear and forward. 

17. Machine:   A selector is a type of zt'iunuor, a "total" generator that produces 

each element of the input once und only once.   Corresponding to the three parts 

of a selector, this type of generator also has three parts:i 

(l)a body which jctually produces the elements 

(2) an initif!!!zer which can set up the generator before it is called the 

first time 

(3) a termination test  (to be used as the transfer termination test) 

which tests whether all elements have been generated 

18. Machine:   I must now select the stnte-saving scheme by which the generator will 

save its state after each call In order to save its state, the generator must 

remember Low the input set is divided into two sets: 

(1) those elements which have already been generated 

(2) those elements which are yet to bo generated 

Recall that the generator is moving linearly through the input list from first to 

last to find each new elctru nt, Therefore ail elements before its current position 

in the list have already been generated, and all elements after its current 

position are yet to be generated.   To save the state of the generator, I need 

f Technically, before these parts can be written, the production re-ordering for the 
generator must be chosen. In this case, it is obviously the same as the selection re- 
ordering, so we have omitted it from the dialogue in the interests of clarity. The 
initializer is written after the producer, since in general the form of an initializer is 
dependent on the body of the loop to be initialized. 

iAte riiii iiiiinmiiifinr ii'iiiiiiiiiiitiMiiiiiiiiiiiM .-.■^.^.^.^.■■■■.■„^•..■, ._...„.. 
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PART 2: Synthesizing the Selector page 13 

only save a marker for the generator's current position in the input list.   One 

pointer will be adequate for this purpose.  Let us call this pointer REST. 

We are about to work on the indicated parts of the selector body 

transfer   initializen 
•   •   • 

transfer  borki: 
LOOP UNTIL DONE; 

selector  hocly: 
sei ret   the next  element   from   input=* 

ejencrate   the  next  clement   from   input=> 
produce element; 
increment stole of generator; 

•   ■   • 

RrPHATi 
DONE:    HALT. 

'TI   (2) 
t|  (1) 

19. Machine:   Now I will synthesize the body of the generator. 

two pieces: 

(1) increment the state of the generator 

(2) produce the next element 

need code for 

MMMteH .__-, 
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20. Machine:   To increment the stale of the generator, I will advance the position 

pointer by one.   Since the representation is a linked list, the code for this is 

merely: 

REST - CDR(REST)i 

21. Machine:   Now I will write the producer.   Since the state-saving scheme uses a 

pointer, REST, to separate those elements generated from those not yet 

generated, and since the next element to be generated is the first element of 

the non-generated set, then the process of saving the state will also effectively 

mark the next element to be generated.! To produce the next element, then, I 

need merely take the first element of the non-generated set, which is pointed to 

by REi'T.* Since the representution is linked-lists, the subprogram for this is: 

ELEMENT •- CAR(REST) 

22. Machine:   I now put the pieces of the generator body together into a block: 

ELEMENT •- CAn(REST); 
REST •- CDfMREST) 

f Throughout, we will use the standard LISP terminology: 
CAR(L> gives the first element of L 
CDn(L) gives the remaining elements of L 
C0N5(X   L)  creates  a new  list  with  first   element  X  and with the  rest   of  the 

elements being those of the list L 
NIL is the empty list (and list terminator) 

f In a selection sort, the code to find the next element to be generated would be 
considerably more complex since it would need to find the largest of the remaining 
elements. 

i There are situations in which the value of the element or a pointer into the list might 
be returned, rather than the element itself, 

... ^^  . _>-    ..           ^^^ 
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We have JüPI finished the indicated parts 

transfer   initialirer: 
^J, 

•   ■   • 

transfer  body: ^^ 
LOOP UNTIL DONE; Xb^iJi---^ 

selector  hocly: 
select   the next   element   from   input=> 

ficnerate   the  next   clement   from   input* 
produce elements» 

ELEMENT >- CAR(REST); '11 
increment   state of   cioncrators* 

REST - CDR(REST); T.I 

REPFAT; 
DONE:    HALT. 

23. Machine:    I   will   now   write   the   generator   initializer   and   the   generator 

termination test.   Since I am using the pointer REST to mark the elements not 

generated, and since initially no elements have been generated, I must initialize it 

to the entire input set: 

REST «- INPUT 

24. Machine:   Now let's write the generator termination test (which will be used 

as the transfer termination test). To test whether all elements have been 

generated, I will test whether there are no elements remaining. Since the 

elements are being generated in a forward linear order, I simply test for being at 

the end of the input list. Since the representation is a linked list, this is simply a 

test for emptiness: 

REST • NIL ? 

■Mü ■ i- ■!  i r,liii«^"""^-. -  
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We have just finished the indicated parts 

transfer   ini t i nl\zert 
selector   initializer:* 

generator   initializer;* 
REST - INPUT; 

•   •   ■ 

transfer body: 
LOOP UNTIL DONE: 

trancfer termination tcc-t: 
IF all elements have been transferred* 

all elements have been selected* 
all elements have been generated* 

no elements remain* 
REST - NIL 

THEN DONE; 
selector body: 

select the next element from input* 
cjenerate the next element from input* 

produce clement* 
ELEMENT •■ CAR (REST); 

increment state of generator* 
REST •- CDn(REjT); 

•       «       • 

REPEAT; 
DONE:    HALT. 

-LI 

11 

25. Machine:   I have finally finiohed the generator which the selector needed.   In 

fact, that is all there is to the entire selector, so the selector is finished. 

mmmmmmmiim MM — - .-...,■,.. 
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<d)    PART 3: Synthesizing the Constructor 

We are now working on the indicated parts of the constructor 

transfer   ini t i ali rer: 
seIector   i ni 11 a Ii zer: 
constructo initializer: 

transfer  body: 
LOOP UNTIL DONE; 

transfer   termination  test: 
IF all   elements have been   transferred: 

all   elements have been selected 

THEN DONE-, 
selector  body: 

select   the next  element   from   input! 
constructor   body: 

oiid the element to output; 
REPEAT-, 
DONE:    HALT 

11 

11 

26. Machine:   One way to create an output set that is a permutation of the 

elements received by the constructor is to write an inductive constructor that 

satisfies the following constraints: 

(1) The initial output set must be empty. 

(2) Each construction operation must be such that the new output set 

consists of the old set plus one new element.! 

(3) After each construction operation, the new set must satisfy our 

ordering relation. 

27. Maohinn!   To write such a constructor, two decisions must first be made: 

(1) Choose a construction re-ordering. 

t It is sometimes convenient to think of the constructor as producing a sequence 
of output sets, and sometimes as succossively modifying one output set. 
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(2) Choose a construction method for building a new set, given the old 

set, the new element, and the position where the new element should 

occur in the set. 

After these choices are made, we will produce code for the constructor body and 

then the constructor initializer.! 

28.  Machine:    I will now choose a construction re-ordering.   I will  use  the  term 

"construction re-ordering" to refer to the relation between (a) the order in which 

the elements are received by the constructor (temporal order) and (b) the order 

of the elements in the output (positional order).  The re-orderings may be linear 

or complex, where linear means same as or converse of,   Since the order in 

which the elements are received (the transfer order) is the same as the input 

order, and the desired output order is not necessarily the same as (nor the 

converse of) the input order, the construction re-ordering must be complex (non- 

linear).? This re-ordering will be based on the "numerically greater than" ordering 

relation.   This means that the correct position of each element in the output list 

will  be such that all preceding elements are less than or equal to the new 

element and all following elements are greater than the new element.? 

t Note that we have implicitly decided that the construction consists of two steps: (1) 
finding the position; (2) adding the clement to the set. One might imagine schemes in 
which finding a position and modifying the set are interleaved operations. 

f This choice of a complex construction re-ordering, along with the choice of a linear 
selection re-ordering, completes the specification of an insertion sort, all of which 
follow from the user's choice of a transfer order "linear with respect to the initial 
order". 

I For clarity, we will refer throughout to an element being "less than" or "greater than" 

.-^^^-^at-t*. '■" ' ■   ■■ ■■■■■■ --.^-    ■ ....-■...»^^^a^^mumjiW^^^-... -        , . . .       _ 
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t   4? 

29. Machine:   Now we must select a construction method for building a new set from 

the old one.   The choices are: 

(a) List insertion: Modify the structure of the old list by inserting a new 

cell containing the new element. 

(b) Shifting: Allocate a now space at the beginning (or end) of the set 

and shift all elements before (after) the new element by one position. 

Then put the new element into the vacant place.t 

(c) Copying: Copy the old set into a new space, one cell larger than the 

old space, with the new element taking up the extra position. 

Which shall I use? 

30. User:   List insertion. 

31. Machine'.   Now I will write the body of the constructor.   The body consists of 

two parts: 

(Da position finder, which finds the position where the new element 

belongs 

(2) a Hit inserter, which inserts the element at this position 

32. Machine:   When a position has been found, there are several ways to indicate 

that position.   First we must select one of these representations for a position. 

\ 

another  element   and mean that  the first  element  precedes or follows  the  second 
element according to the chosen ordering relation. 

f Perhaps, since the "shifting" operation is such an unlikely choice when lists are 
being used, it shouldn't be prescntod to the user. It could be celled forth only 
upon questioning or in unusual programming contexts. 

1 
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We are considering positions to be between two elements in a list.   Since the 

construction meihod involves inserting a new cell into the list, we must choose a 

representation appropriate to insertions into linked lists.  I know about two types 

of such representations: 

(a) Use one pointer as illustrated; 

(pos it i an) 

M   L 

BEFORE 

In using this representation, a special unique value for BEFORE must be used if 
the correct position is at the front of the list, "FRONT" will be used for this 
purpose. 

(b) Use two pointers as illustrated: 

(posi t i on) 

C 

BEFORE AFTER 

In using this representation, a special unique value for BEFORE must be used if 
the correct position is at the front of the list. "FRONT" will be used for this 
purpose. If the correct position is at the end of the list, AFTER will point to the 
empty list. 

Which shall I use'' 

33. User!   Please use two pointers.   [This choice might be based either on looking 

ahead or on knowing at this point that the BEFORE pointer is useful for inserting 

---  - —   ^agU^jK,  - 
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into the list and the AFTER pointer is useful for incrementing the state of the 

pooition imder and for testing the correctness of a position.] 

34. Machine:   I need variable names for the two pointers.   I will use BEFORE and 

AFTER. 

We arc about to work on the position finder as indicated 

transfer   ini tlalizcr: 
■   •   • 

transfer  body: 
LOOP UNTIL DONE; 

constructor  body: 
add  the element   to output^ 

find (he position Jot the new eloncnt; 
insert   the neu element   into  the position; 

REPEAT; 
DONE:    HALT. 

"J 

35. Machine:   1 am now writinc the program that finds the position.   First we will 

select a seareh strategy for searching the output list to find the correct position. 

The only straleny which I know about for linked lists is a forward linear scan, so I 

will use that strategy, 

36. Machine:   Since the search strategy is a forward linear scan of a finite list, tl 5 

search strategy is total; that is, all possible positions will be considered, Since 

the old output set is well-ordered, and since the ordering relation applies to all 

elements involved, one of these possible positions must be correct. Therefore, 

the search for a correct position must succeed, and no exit will be required for 

the case of not finding a correct position.  So I will use a loop which consists only 

m-mmm MÜtmiiini in    '    ^^^.-,-..^  .   . ...*.,M.t.^iü:t& 





PART 3: Synthesizing the Constructor page 23 

represerting the state of the search. The incrementer will increment this state 

and will also specify the next position to be considered, 

39. Machine:   Since the search strategy is a forward linear scan of the linked list, 

and since the two-pointer position representation has been selected, the two 

pointers (BEFORE and AFTER), which are already being used to represent the 

position, are also sufficient to remember the state.! 

40. Machine!    An incrementer  for a forward linear scan using  the  two-pointer 

position representation requires two pieces of code: one to reset BEFORE to the 

value of AFTER, and one to increment AFTER. This is adequate both for the 

general case in the interior of a linked list, and in the special case at the front of 

a list, where BEFORE originally has the special value "FRONT" and is reset to point 

to the first cell in the list.   The pieces will be put together in that order. 

41. Machine:   I am now writing the code to reset BEFORE to the value of AFTER. 

The code to do that is: 

BEFORE *■ AFTER 

4,2.   Machine:    I   am   now   writing   the   code   to   increment   AFTER.     Since   the 

representation is a linked list, the code to do that is: 

AFTER •- CDR(AFTER) 

f The position memory and the state memory need not always be the same. For 
example, if only BEFORE were used to remember the position, a good choice of state- 
memory would probably include a pointer playinc the same role as AFTER. 

■AMMMMI ■waaiiiiiaiiritttfUMMiiMMMMMMMttlMMMMMri ■- —         ■  . 
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43-    Machine:     Putting   these   two   pieces   together,   we   have   the   following 

incrementer for the position finder: 

BEFORE - AFTER; 
AFTER «- CDR(AFTER) 

44. Machine!   I will also need a position initializer which initializes both the state 

of the position finder and the position representation to the first position 

according to the search strategy. 

45. Machine:    Since the position representation is also used to represent  the 

state, we need only initialize the position representation. 

46. Machine:   Since the search strategy is forward linear scan, we must initialize 

the position representation to the position at the front of the list. The 

convention for representing the position at the front of the list is that BEFORE has 

the unique value "FRONT" and that AFTER points to the entire list. 

47. Machine:   The code to set BEFORE to "FRONT" is: 

BEFORE ♦• "FRONT" 

48. Machine:   The code to set AFTER to the entire list is: 

AFTER •- OUTPUT 

49. Machine:    Putting these two pieces together, the initializer for the positi 

finder is: 

BEFORE ♦- "FRONT"; 
AFTER ♦- OUTPUT 

on 

tmmmitimm m^^mm '-"■^^  ^-   ■.:.■,■■ .............. ^.^... ,.-. .-WJNajl 
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Wc have just finished the indicated parts of the position finder 

transfer   ini t inlirer: 

transfer  botlijl 
LOOP 1INTII. DONE; 

constructor  body: 
add   the  element   to output* 

find  the position  for   the neu element;» 
initializc  position  finder   loop* 

BEFORE - "FRONT": •n 
AFTER - OUTPUT; -n 

LOOP UNTIL CORRECT POSITION FOUNDj 
IF posi t ion   i s correct 

THT.N CORRECT POSITION FOUND; 
increment  state and specify position* 

BEFORE - AFTER; -n 
AFTER - CDRIAFTER); •n 

M3Kh 
CORRECT POSITION FOUND: 

insert   the neu clement   into   the position; 

REPÜATi 
DONE:    HALT. 

50. Machine:   I will now work on the exit test for the correct position.   I will first 

try to infer the necessary pieces of this test. 

51. Machine:   Sin^.j the set is ordered, it follows from transitivity that  the new 

element need not be compared against all of the elements of the set, but merely 

against the elements immediately adjacent to the position being considered 

52. Machine:   Since the search strategy is forward linear scan, at any point in the 

search, all of the elements occurring before the current position in the list have 

already been tested and found to be loss than the new element. This holds for 

all positions including the initial position in which no elements occur before the 

position in the list. 

——    ■■  
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53. Machine:   Thus, the lest for correctness of position need only include a test 

that all elements occurring after the current position in the list are greater than 

the new element. 

54. Machine:   To test that all elements occurring after the current position are 

greater than the new element, the program must first test whether there are no 

elerr.entr occurring after the current position. Then, if there are such elements, 

it must test whether all such elements are greater than the new element. 

55. Machine:    A  test  that  there are no elements occurring after  the current 

position is simply a test whether the list pointed to by the second pointer 

(AFTER) is empty: 

AFTER » NIL ? 

56. Machine:   As noted previously, the correctness test need only consider the 

immediately adjacent elements, so that a test that all elements occurring after 

the current position are greater than the new element is simply a test that the 

first element occurring after the current position is greater than the new 

element. To write such a tost I need code to extract the first element from the 

list pointed to by AFTER and a test whether this element is greater than the new 

element. 

57. Machine:   The code to extract the first element from a list is: 

CAR(AFTER) 

58. Machine:    The code to test whether this element  is greater than the new 

element is: 

CAIMAFTER) > ELEMENT 7 

--^J ■"—^•La^"**,J*mi*,-"~ -'-■"- --  '-■■■■ ..^■■^^M^MlU^^MM^al»^-^^.,     ..  
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59. Machine:    Given the two partial tests, the complete correctness test  is an 

ordered ORt of the two partial tests: 

[AFTER • NIL) OB [CAn(AFTER) > ELEMENT] ? 

The indicated parts complete the position finder 

transfer   ini t i a i izer: 
•   •   • 

transfer   borly: 

LOOP UNTIL DONE; 
•   •   • 

constructor   body: 
add   the element   to output=> 

find   the position  for   tho neu element* 
initial ire position  finder   loop=» 

BEFORE - "FRONT"; 
AFTER - OUTPUT; 

LOOP UNTIL CORRECT POSITION FOUND; 
IF position   is correct* 

no elements occur  after  position: 

AFTER = NIL 
OR next  element   is greater* 

CAR(AFTER) > ELEMENT 
THEN CORRECT POSITION FOUND; 

increment  ct^te and specify position: 
BEFORE - AFTER; 
AFTER <- CDFUAFTER); 

REPEATi 
CORRLCT POSITION FOUND: 

insert   the  neu element   into   the  position; 
REPEAT; 
DONE:    HALT 

"0 

60. Machine:   Having completed the position finder, we must now write the list 

f By "ordered nn" we mean that the second argument is evaluated only if the first 
argument is false. 

■ ■- - ■^^
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66. Machine:   Having completed the pieces of the Selector and the pieces of the 

Constructor, I can assemble the pieces into the final program using a Generate 

and Process paradigm with the termination test before the generator. 

67. Machine:   The final  program, without  any meta-code or comments,  and its 

translation into LISP are given be 

REST - INPUT; 
OUTPUT - NIL; 

LOOP 1INT11. DONE; 

REST = NIL 

THEN DONE; 

ELEMENT •- CAn(REST); 

REST - CümREST); 

BEFORE *■ "FRONT"; 
AFTER •- OUTPUT; 
LOOP UNTIL CORRECT POSITION FOUND; 

IE 
AFTER = NIL 

OR CAWAFTER) > ELEMENT 

THEN CORRECT POSITION FOUND; 

BEFORE - AFTER; 
AFTER - CDIMAFTER); 

REPFAT; 
CORRECT POSITION FOUND: 

IE 
BEFORE = "FRONT" 

THEN OUTPUT •- 
CONS(ELEMENT OUTPUT) 

ELSE 
CDR(BEFORE)- 

CONS(ELEMENT AFTER); 

REPEATj 

DONE:   KALT, 

OW: 

LAMBDA NIL 
(PROG    NIL 

(SETQ OUTPUT NIL) 
(SETQ REST INPUT) 

LI 

L3 

(COND 

((NULL REST) 

(GO L2))) 

(SETQ ELEMENT (CAR REST)) 

(SETQ REST (CDR REST)) 

(SETQ BEFORE "FRONT") 
(SETQ AFTER OUTPUT) 

(COND 

((OR (NULL AFTER) 

(GREATERP (CAR AFTER) ELEMENT)) 

(GO L4))) 

(SETQ BEFORE AFTER) 
(SETQ AFTER (CDR AFTER)) 

(GO L3) 

L4 
(COND 

((EQUAL BEFORE "FRONT") 
(SETQ OUTPUT 

(CONS ELEMENT OUTPUT))) 

(T 
(RPLACD BEFORE 

(CONS ELEMENT AFTER)))) 

(GOLD 

L2     (RETURN NIL] 

-■■-" "■'—-—  , . ^ 
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III.   TYPES OP PROGRAMMING KNOWLEDGE 

i 

'• 

On reviewing the dialogue, we can see that there are oeveral types of 

knowledge involved. We first note that there is significant use of a kind of strategy or 

planning knowledge. On one level, we see this in steps 9 and 14, where the system 

discusses what must be done to write a transfer program. In step 9 for c imple, the 

sub-steps 3 and 4, where the transfer order and the transfer termination method are 

chosen, are really a kind of strategy for determining the form that the basic algorithm 

will take. On a different level, we see a kind of global optimization in steps 21 and 39, 

where the system decides that information structures designed for one purpose are 

sufficient fcr another. In step 21, for example, the pointer originally chosen to save the 

state of the selector (by marking the dividing point between those elements generated 

and those not yet generated) is found to be adequate for the purpose of indicating the 

next element to be generated. One could imagine, as an alternative to this type of 

planning, the use of more conventional local optimization such as post-synthesis removal 

or combination of redundant portions. 

We also see that the system maker considerable use of inference and 

simplification knowledge. Inference plays a role in the global optimization planning 

mentioned above, and also appears in steps 16 and 28, where the selection and 

construction re-orderings are determined. Simplification and inference are both 

apparent in steps 50 through 56, where the test for the correctness of the position 

was reduced to a simple test on the variable AFTER. Simplification and inference are 

also needed in step 36 where the system decides that an error exit (for the case of no 

position being found) is unnecessary. 
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Additionally, there are types of knowledge which are spread throughout the 

dialogue. Relatively domain-r.pccific knowledge (in this casp, about sorting) is 

particuk'Hy necessary in the earlier stages. Language-specific knowledge (in this case, 

about LISP) is necessary when the final code is being generated. Genoral prograrnming 

knowledge, such as knowledge about set enumeration and linked lists, is necessary 

throughout the synthesis process. Further, one could imagine significant use of 

efficiency information, although it is not present in our particular dialo^je. 

The variety of types and amounts o' knowledge used in the dialogue would tend 

to indicate that much more information is required for automatic syntheolo of sorting 

programs than appeared in earlier, computer-implemented, systems for writing sort 

programs [3, 7, 11]. Ruth has developed a formulation of the knowledge involved in 

interchange and bubble sort programs [9]. His formulation is aimed primarily at the 

analysis of simple student programs in an instructional environment and the analysis task 

as defined does not seem to require the same depth and generality of knowledge 

suggested by our dialogue. Our intuition is that a significantly greater depth of 

programming knowledge would be required to extend his formulation to a larger class of 

programs. It is also interesting to compare the information involved in our dialogue to 

that found in non-implrmcntcd (and not intended for machine implementation) human- 

oriented guides for sort-algorithm selection and in textbooks on sorting Martin [8] 

gives methods for selecting a good algorithm for a particular sorting problem. Those 

algorithms are much more powerful than those we deal with and their derivation would 

require   considerably   more   information.    We   note   that   at   the   level   of   algorithm 
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i 

description presented, little explicit information is available to allow pieces of 

algorithms to be fitted together or to allow slight modification of existing algorithms. A 

sorting textbook such as [5], gives several orders of magnitude more information on 

sorting than is required for our dialogue. 

Can we measure or estimate in some way how much knowledge is necessary for 

program-understanding systems? The fact that the dialogue describing the synthesis 

took some seventy steps (with some of the steps rather complex) is an indication that 

considerable information is involved. From our experiments, we estimate that about 

one or two hundred explicitly stated "facts" or rules would get r. synthesis system 

through the underlying steps of this dialogue. Furthermore, it is our guets that at least 

this much knowledge density will be required for other similar tasks, in order to have 

the flexibility necessary for the many aspects of program understanding. Although we 

are suggesting that such information must be effectively available in some form to a 

system, we are not in a position to estimate how much of this information should be 

stated explicitly (as, say, rules), how much should be derivable (from, say, meta-rules), 

how much should be learned from experience, or available in any other fashion. 

IV.    SUMMARY AND CONCLUSIONS 

In this papr we have tried to exemplify and specify the knowledge -jopropriate 

for a program-understanding system which can synthesize small programs, by presenting 

a dialogue between a hypothetical version of such a system and a user.   Our conjecture 
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is that unieos a system is capable of exceeding the reasoning power, and even some of 

the communication abilities, exemplified by the dialosue, the system will not effectively 

"understand" what it is doing well enough to synthesize, analyze, modify, and debug 

programs. It appears that a system which attempts to meet this standard rnuot have 

large amounts of many different kinds of knowledge. Most such programming knowledge 

remains to be codified into some form of machine implementable theory. In fact, the 

codification of such knowledge is one of the main research problems in procram- 

understanding systems. 

As for our own work, in the near future we expect to refine our experimental 

system until it approaches 'as closely as seems useful and posoible) the standard 

suggested by our dialogue (but without the actual language interface). We hope then 

to extend the system to deal with several different types of sorting programs. Perhaps 

then we will be in a better position to estimate the requirements of larger program- 

understanding systems. 
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